
IJSRSET15113 | Received: 16 Dec 2014 | Accepted: 20 Dec 2014 | January-February 2015 [(1)1: 62-69]

Themed Section: Engineering and Technology

62

Design of Single Precision Floating Point Multiplication Algorithm with Vector
Support

T.Govinda Rao
*1

, D.Arun Kumar
2

*1Research Scholar, Department of ECE, GMRIT, RAJAM, AP, INDIA
2Department of ECE, GMRIT, RAJAM, AP, INDIA

ABSTRACT

This paper presents floating point multiplier capable of supporting wide range of application domains like

scientific computing and multimedia applications. The floating point units consume less power and small

part of total area. Graphic Processor Units (GPUS) are specially tuned for performing a set of operations

on large sets of data. This paper work presents the design of a single precision floating point multiplication

algorithm with vector support. The single precision floating point multiplier is having a path delay of 72ns

and also having the operating frequency of 13.58MHz.Finally this implementation is done in Verilog HDL

using Xilinx ISE-14.2.

Keywords: floating point multiplier, GPUS, operating frequency, HDL

I. INTRODUCTION

Floating Point numbers represented in IEEE 754

format is used in most of the DSP Processors.

Floating point arithmetic is useful in applications

where a large dynamic range is required or in rapid

prototyping applications where the required number

range has not been thoroughly investigated. A

Floating point multiplier is the most common

element in most digital applications such as digital

filters, digital signal processors, data processors

and control units.

There are two types of number formats present.

1. Fixed point representation

2. Floating point representation.

These refer to the format used to store and

manipulate numbers within the devices. Fixed point

DSPs usually represent each number with a

minimum of 16 bits. In comparison, floating point

DSPs use a minimum of 32 bits to store each value.

This results in many more bit patterns than for fixed

point. All floating point DSPs can also handle fixed

point numbers, a necessary to implement counters,

loops, and signals coming from the ADC and going

to the DAC.

In general purpose fixed point arithmetic is much

faster than floating point arithmetic. However, with

DSPs the speed is about the same, a result of the

hardware being highly optimized for math

operations. The internal hardware of floating point

DSP is much complicated than for a fixed device.

Floating point has better precision and a higher

dynamic range than fixed point. In addition,

floating point programs often have a shorter

development cycle, since the programmer doesn’t

generally need to worry about issues such as

overflow, underflow and round-off error.

Noise in signals is usually represented by

its standard deviation. For here, the important fact

is that the standard deviation of this quantization

noise is about one-third of the gap size. This means

that the signal-to-noise ratio for storing a floating

point number is about 30 million to one, while for a

fixed point number it is only about ten-thousand to

© 2015 IJSRSET | Volume 1 | Issue 1 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

63

one. In other words, floating point has roughly

30,000 times less quantization noise than fixed

point.

The important idea is that the fixed point

programmer must understand dozens of ways to

carry out the very basic task of multiplication. In

contrast, the floating point programmer can spend is

time concentrating on the algorithm the cost of the

DSP is insignificant, but the performance is critical.

In spite of the larger number of fixed point DSPs

being used, the floating point market is the fastest

growing segment. Verilog programming has been

used to implement Floating Point Multiplier.

Tool used for programming XILINX ISE SUITE

14.2 Version.

II. METHODS AND MATERIAL

IEEE754 FLOATINGPOINT REPRESENTATION

Basic Representation

IEEE floating point numbers have three basic

components: the sign, the exponent, and the

mantissa. The mantissa is composed of

the fraction and an implicit leading digit. The

exponent base 2 is implicit and need not be stored.

Single Precision:

31 30 24 23 2 1 0

Figure IEEE-754 Single Precision Bit Format

Where

 S = Sign Bit

 E = Exponent

 M = Mantissa

 The sign bit is as simple as it gets. 0 denotes a

positive number; 1 denotes a negative number.

Flipping the value of this bit flips the sign of the

number.

 The exponent field needs to represent both

positive and negative exponents. To do this,

a bias is added to the actual exponent in order to

get the stored exponent.

 For IEEE single-precision floats, this value is

127. Thus, an exponent of zero means that 127

is stored in the exponent field. A stored value of

200 indicates an exponent of (200-127), or 73.

For reasons discussed later, exponents of -127

(all 0s) and +128 (all 1s) are reserved for special

numbers.

 Significand is the mantissa with an extra MSB

bit i.e.,1 which represents the precision bits of

the number. It is composed of an implicit

leading bit and the fraction bits.

Floating Point Multiplication Algorithm

Normalized floating point numbers have the form

of

Z= (-1
S
) * 2

(E - Bias)
* (1.M).

Steps for Floating Point Multiplication

To multiply two floating point numbers the

following is done:

1. Multiplying the significand; i.e.

2. Placing the decimal point in the result

3. Adding the exponents; i.e.

4. Obtaining the sign; i.e. s1EXOR s2

5. Normalizing the result; i.e. obtaining 1 at the

MSB of the results significant

6. Rounding the result to fit in the available bits

7. Checking for underflow/overflow occurrence

Multiplication using Two Numbers

Consider a floating point representation similar to

the IEEE 754 single precision floating point format,

but with a reduced number of mantissa bits. Here

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

64

only 4 bits are considered for mantissa instead of 23

bits for easy understanding.

Let the two numbers be:

A = 0 00001001 1110 = 60

B = 1 10000001 1010 = -6.5

 The significant of the above numbers can be

obtained by retaining the hidden bit 1 of the two

mantissa.

To multiply A and B

1. Multiply significant: 1.1110

 x1.1010

00000

11110

 00000

 11110

 00000

110001100

2. Place the decimal point: 11.00001100

3. Add exponents: 10000100

+ 10000001

 100000101

The exponent representing the two numbers is

already shifted/biased by the bias value (127) and

is not the true exponent; i.e. EA = EA-true + bias

and EB = EB-true + bias

And

 (3.1)

So we should subtract the bias from the resultant

exponent otherwise the bias will be added twice.

 100000101

- 1111111

 10000110

4. Obtain the sign bit and put the result

together:

1 10000110 11.0001100

5. Normalize the result so that there is a 1 just

before the radix point (decimal point). Moving

the radix point one place to the left increments

the exponent by 1; moving one place to the right

decrements the exponent by 1.

 1 10000110 11.00001100 (before normalizing)

 1 10000111 1.100001100 (normalized)

The result is (without the hidden bit):

1 10000111 100001100

6. The mantissa bits are more than 4 bits (mantissa

available bits); rounding is needed. If we applied

the truncation rounding mode then the stored value

is:

1 10000111 1000

Structure of the Multiplier

Rounding support can be added as a separate unit

that can be accessed by the multiplier or by a

floating point adder, thus accommodating for more

precision if the multiplier is connected directly to

an adder in a MAC unit.

Figure 1. Floating Point Multiplier Block Diagram

The floating point multiplier structure contains the:

1. Exponents addition

2. Significant multiplication

3. Result’s sign calculation

These functions are independent and are done in

parallel. The significant multiplication is done on

two mantissa bit numbers, which we will call the

intermediate product (IP). The IP is represented as

(47 down to 0) for single precision (127 down to 0)

MULTIPLIER RESULT

NORMALIZER

EXOR

+

-

*

A_exponent B_exponent A_mantissa

A_sign B_sign

Bias

B_mantissa

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

65

for double precision. The following sections detail

each block of the floating point multiplier.

Hardware of Floating Point Multiplier

Unsigned Adder

This unsigned adder is responsible for adding the

exponent of the first input to the exponent of the

second input and subtracting the Bias (127) from

the addition result (i.e. A exponent + B_exponent -

Bias). The result of this stage is called the

intermediate exponent.

The add operation is done on 8 bits, and there is no

need for a quick result because most of the

calculation time is spent in the significand

multiplication process (multiplying 24 bits by 24

bits); thus we need a moderate exponent adder and

a fast significand multiplier.

An 8-bit ripple carry adder is used to add the two

input exponents. As shown in Fig. 4.2 a ripple

carry adder is a chain of cascaded full adders and

one half adder; each full adder has three inputs (A,

B, Ci) and two outputs (S, Co). The carry out (Co) of

each adder is fed to the next full adder (i.e. each

carry bit "ripples" to the next full adder).

Figure 2 : Ripple Carry Adder

The addition process produces an 8 bit sum (S7 to

S0) and a carry bit (Co,7). These bits are

concatenated to form a 9 bit addition result (S8 to S0)

from which the Bias is subtracted.

Table 1: Port list Ripple Carry Adder

S.No. Port Direction Size Description

1. E1 Input 8

 Bits 23-30 for the

first input

2. E2 Input 8

 Bits 23-30 for the

second input

3. S0 Output 8

 Result of the

addition

4. Ca Output 1

 Carry due to

addition

SUBTRACTOR

The exponent of the IEEE 754 forat consists of the

sum of original exponent and the bias value. While

adding two exponent values, bias is added two

times. So bias is subtracted from the result of the

adder. The Bias is subtracted using an array of

ripple borrow subtractors.

A normal subtractor has three inputs (minuend (S),

subtrahend (T), Borrow in (Bi)) and two outputs

(Difference (R), Borrow out (Bo)). The subtractor

logic can be optimized if one of its inputs is a

constant value which is our case, where the Bias is

constant .In single precision the Bias subtractor

which is a chain of 7 one subtractors (OS) followed

by 2 zero subtractors (ZS); the borrow output of

each subtractor is fed to the next subtractor. If an

underflow occurs then Eresult< 0 and the number is

out of the IEEE 754 single precision normalized

numbers range; in this case the output is signaled to

0 and an underflow flag is asserted.

Table 2: Port list of Ripple Borrow

S.No. Port Direction Size Description

1. T Input 8 Bias value

2. S Input 8

Result of ripple

carry adder

3. C0 Input 1

 Carry of ripple

carry adder

4. B0 Output 1

Borrow output of

subtractor

5. R Output 8

 Output of the

subtractor

HA FA FA FA

S7 Si S1 S0

A7 Ai A1 A0 B7 Bi B1 B0

C0,7

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

66

Subtractor

Unsigned Multiplier

This unit is responsible for multiplying the

unsigned significand and placing the decimal point

in the multiplication product. The result of

significand multiplication will be called the

intermediate product (IP). The unsigned significand

multiplication is done on 24 bit. Multiplier

performance should be taken into consideration so

as not to affect the whole multiplier’s performance.

A 24x24 bit carry save multiplier architecture is

used and for the double precision 52 x52 bit carry

save multiplier is used as it has a moderate speed

with a simple architecture. In the carry save

multiplier, the carry bits are passed diagonally

downwards (i.e. the carry bit is propagated to the

next stage).

Carry save multiplier has three main stages:

1. The first stage is an array of half adders.

2. The middle stages are arrays of full adders. The

number of middle stages is equal to the

significand size minus two.

3. The last stage is an array of ripple carry adders.

This stage is called the vector merging stage.

Figure 3 : Unsigned Multiplier

The number of adders (Half adders and Full adders)

in each stage is equal to the significand size minus

one. For example, a 4x4 carry save multiplier has

the following stages

 The first stage consists of three half adders.

 Two middle stages; each consists of three full

adders.

 The vector merging stage consists of one half

adder and two full adders.

The decimal point is between bits 45 and 46 in the

significand multiplier result. The multiplication

time taken by the carry save multiplier is

determined by its critical path. The critical path

starts at the AND gate of the first partial products

(i.e. a1b0 and a0b1), passes through the carry logic of

the first half adder and the carry logic of the first

full adder of the middle stages, then passes through

all the vector merging adders. The critical path is

marked

Table 3 : Port list of Unsigned Multiplier

S.No. Port Direction Size Description

1. A1 Input 24

 Bit 0-22 of

first input

2. A2 Input 24

Bit 0-22 of

second input

3. S Output 47

 Output of

multiplier

Normalizer

The result of the significand multiplication

(intermediate product) must be normalized to have

a leading “1” just to the left of the decimal point

(i.e. in the bit 46 in the intermediate product). Since

the inputs are normalized numbers then the

intermediate product has the leading one at bit 46 or

47

1. If the leading one is at bit 46 (i.e. to the left of

the decimal point) then the intermediate product

is already a normalized number and no shift is

needed.

2. If the leading one is at bit 47 then the

intermediate product is shifted to the right and

the exponent is incremented by 1.

S

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

67

The shift operation is done using combinational

shift logic made by multiplexers. Fig. 8 shows a

simplified logic of a Normalizer that has an 8 bit

intermediate product input and a 6 bit intermediate

exponent input

 Table 4 : Port list of Normalizer

S.No. Port Direction Size Description

1. Si Input 24 Result of

multiplier

2. Ei Input 8 Result of the

subtractor

3 S0 Output 23 Significand

result due to

normalization

4 E0 Output 8 Final output of

the exponent

Underflow/Overflow Detection

Overflow/underflow means that the result’s

exponent is too large/small to be represented in the

exponent field. The exponent of the result must be 8

bits in size, and must be between 1 and 254

otherwise the value is not a normalized one. An

overflow may occur while adding the two

exponents or during normalization. Overflow due to

exponent addition may be compensated during

subtraction of the bias; resulting in a normal output

value (normal operation). An underflow may occur

while subtracting the bias to form the intermediate

exponent. If the intermediate exponent < 0 then it’s

an underflow that can never be compensated; if the

intermediate exponent = 0 then it’s an underflow

that may be compensated during normalization by

adding 1 to it.

When an overflow occurs an overflow flag signal

goes high and the result turns to ±Infinity (sign

determined according to the sign of the floating

point multiplier inputs). When an underflow occurs

an underflow flag signal goes high and the result

turns to ±Zero (sign determined according to the

sign of the floating point multiplier inputs).

Denormalized numbers are signaled to Zero with

the appropriate sign calculated from the inputs and

an underflow flag is raised. Assume that E1 and E2

are the exponents of the two numbers A and B

respectively; the result’s exponent is calculated by

Eresult = E1 + E2 – 127

Table 5 : Underflow and Overflow Conditions

E result Category Comments

-125 ≤ Eresult<

0

Underflow Can’t be compensated

during

normalization

Eresult = 0 Zero May turn to normalized

number during

normalization (by adding 1

to it)

1 <Eresult< 254 Normalized

number

May result in overflow

during

Normalization

255 ≤ Eresult Overflow Can’t be compensated

E1 and E2 can have the values from 1 to 254;

resulting in Eresult having values from -125 (2-127)

to 381 (508-127); but for normalized numbers,

Eresult can only have the values from 1 to 254. Table

4.9 summarizes the Eresult different values and the

effect of normalization on it.

III. RESULTS AND DISCUSSION

Figure 4 : : Full Adder Output

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

68

Figure 5 : Ripple Carry Adder Output

Figure 5 : Normalizer Output

Figure 6 : Unsigned Multiplier Output

Figure 7 : Single Precision Floating point Multiplier Output (60×-6.5)

DESIGN SUMMARY

IV. CONCLUSION AND FUTURE WORK

This paper presents an implementation of a floating

point multiplier that supports the IEEE 754-2008

binary interchange format. A methodology for

estimating the power and speed has been developed.

This Pipelined vectorized floating point multiplier

supporting FP16, FP32, FP64 input data and

reduces the area, power, latency and increases

throughput. Precision can be implemented by taking

the 128 bit input operands.

Register Transfer Logic has developed for Double

precision Floating Point Multiplier further

simulation results can be implemented. The

performance of the Floating point multiplier can be

increased by taking the 256 bit input bus instead of

the 128 bit bus. The throughput and area

optimization can be improved by using more

general significand multipliers and exponent adders.

Two 53 bit multipliers and two 24 bit multipliers

are used to compute the significands of all

supported Floating point formats.

V. REFERENCES

[1] Alok Baluni,Farhad Merchant ,s.k.nandy,s.Balakrishnan,”a

Fully Pipelined Modular Multiple Precision Floating Point

Multiplier With Vector Support” 2011 international

symposium on Electronic system design(ISED)PP.45-50.

[2] IEEE,IEEE Standard for Binary Floating-Point

Arithmetic.IEEE.1985.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

69

[3] K.Manopolous,D.Reises,V.A.Chouiaras “An Efficient

Multiple Precision Floating Point Multiplier”2011 IEEE.PP

153-156.

[4] E.Stenersen,”Vectorized 256-bit input fp16/fp32/fp64

floating point multiplier ” Norwegain University of

Science and Technology,2007.

[5] I. Koren, Computer Arithmetic Algorithms. Natick, MA,

USA: A. K.Peters, Ltd., 2001.

[6] S. T. Oskuli, Design of Low-Power Reduction-Trees in

Parallel multipliers PhD thesis, Norwegian University of

Science and Technology,2008.

[7] G. Even and P.-M. Seidel, “A comparison of three

rounding algorithms for IEEE

floating-point multiplication,” IEEE Trans. Comput., vol.

49, no. 7, pp. 638–650,

[8] N. T. Quach , N. Takagi, and M. J. Flynn, “Systematic

IEEE rounding method for high

Speed floating-point multipliers,” IEEE Trans. Very Large

Scale Integr. Syst., vol. 12, no. 5, pp. 511–521, 2004.

[9] L. Wanhammar, DSP Integrated Circuits. Academic Press,

1999.

T. GOVINDA RAO pursing PhD in

Pondicherry Central University. He is an

Assistant Professor in the Department of

Electronics and Communication

engineering, GMRIT, Rajam. His current

research interests include the areas of

Wireless Sensor Networks, very large

scale integration (VLSI) testing and fault-tolerant

computing, video coding techniques, and

Architectures design.

D.ARUN KUMAR received M.Tech from

Andhra University, Visakhapatnam. He

is an Assistant Professor in the Department

of Electronics and Communication

engineering, GMRIT, Rajam. His current

research interests

