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ABSTRACT 
 

This paper presents floating point multiplier capable of supporting wide range of application domains like 

scientific computing and multimedia applications. The floating point units consume less power and small 

part of total area. Graphic Processor Units (GPUS) are specially tuned for performing a set of operations 

on large sets of data. This paper work presents the design of a single precision floating point multiplication 

algorithm with vector support. The single precision floating point multiplier is having a path delay of 72ns 

and also having the operating frequency of 13.58MHz.Finally this implementation is done in Verilog HDL 

using Xilinx ISE-14.2. 

 

Keywords: floating point multiplier, GPUS, operating frequency, HDL 
 

 

 

I. INTRODUCTION 

 

Floating Point numbers represented in IEEE 754 

format is used in most of the DSP Processors. 

Floating point arithmetic is useful in applications 

where a large dynamic range is required or in rapid 

prototyping applications where the required number 

range has not been thoroughly investigated. A  

Floating  point  multiplier  is  the  most  common 

element in most digital applications such as digital 

filters,  digital  signal processors,  data  processors 

and control units. 

 

There are two types of number formats present. 

1.  Fixed point representation 

2.    Floating point representation. 

 

These refer to the format used to store and 

manipulate numbers within the devices. Fixed point 

DSPs usually represent each number with a 

minimum of 16 bits. In comparison, floating point 

DSPs use a minimum of 32 bits to store each value. 

This results in many more bit patterns than for fixed 

point. All floating point DSPs can also handle fixed 

point numbers, a necessary to implement counters, 

loops, and signals coming from the ADC and going 

to the DAC. 

 

In general purpose fixed point arithmetic is much 

faster than floating point arithmetic. However, with 

DSPs the speed is about the same, a result of the 

hardware being highly optimized for math 

operations. The internal hardware of floating point 

DSP is much complicated than for a fixed device. 

Floating point has better precision and a higher 

dynamic range than fixed point. In addition, 

floating point programs often have a shorter 

development cycle, since the programmer doesn’t 

generally need to worry about issues such as 

overflow, underflow and round-off error. 

 

Noise in signals is usually represented by 

its standard deviation. For here, the important fact 

is that the standard deviation of this quantization 

noise is about one-third of the gap size. This means 

that the signal-to-noise ratio for storing a floating 

point number is about 30 million to one, while for a 

fixed point number it is only about ten-thousand to 
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one. In other words, floating point has roughly 

30,000 times less quantization noise than fixed 

point. 

 

The important idea is that the fixed point 

programmer must understand dozens of ways to 

carry out the very basic task of multiplication. In 

contrast, the floating point programmer can spend is 

time concentrating on the algorithm the cost of the 

DSP is insignificant, but the performance is critical. 

In spite of the larger number of fixed point DSPs 

being used, the floating point market is the fastest 

growing segment. Verilog programming has been 

used to implement Floating Point Multiplier.   

Tool used for programming XILINX ISE SUITE 

14.2 Version. 

 

II. METHODS AND MATERIAL 

 

IEEE754 FLOATINGPOINT REPRESENTATION 

 

Basic Representation 

 

IEEE floating point numbers have three basic 

components: the sign, the exponent, and the 

mantissa. The mantissa is composed of 

the fraction and an implicit leading digit. The 

exponent base 2 is implicit and need not be stored. 

 

Single Precision: 

 

31 30  24 23  2 1 0 

 

Figure  IEEE-754 Single Precision Bit Format 

                        

Where 

  S = Sign Bit 

  E = Exponent 

 M = Mantissa 

 The sign bit is as simple as it gets. 0 denotes a 

positive number; 1 denotes a negative number. 

Flipping the value of this bit flips the sign of the 

number. 

 The exponent field needs to represent both 

positive and negative exponents. To do this, 

a bias is added to the actual exponent in order to 

get the stored exponent. 

  For IEEE single-precision floats, this value is 

127. Thus, an exponent of zero means that 127 

is stored in the exponent field. A stored value of 

200 indicates an exponent of (200-127), or 73. 

For reasons discussed later, exponents of -127 

(all 0s) and +128 (all 1s) are reserved for special 

numbers. 

 Significand is the mantissa with an extra MSB 

bit i.e.,1 which represents the precision bits of 

the number. It is composed of an implicit 

leading bit and the fraction bits.  

       
       

            

   
       

    

Floating Point Multiplication Algorithm 

 

Normalized floating point numbers have the form 

of  

Z= (-1
S
) * 2 

(E - Bias )
* (1.M). 

Steps for Floating Point Multiplication    

To multiply two floating point numbers the 

following is done: 

1. Multiplying the significand; i.e.         

    

2.   Placing the decimal point in the result 

3.   Adding the exponents; i.e.            

4.   Obtaining the sign; i.e. s1EXOR s2 

5.   Normalizing the result; i.e. obtaining 1 at the 

MSB of the results significant 

6.   Rounding the result to fit in the available bits 

7.   Checking for underflow/overflow occurrence 

 

Multiplication using Two Numbers 

 

Consider a floating point representation similar to 

the IEEE 754 single precision floating point format, 

but with a reduced number of mantissa bits. Here 
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only 4 bits are considered for mantissa instead of 23 

bits for easy understanding. 

Let the two numbers be: 

A = 0 00001001 1110  = 60 

B = 1 10000001 1010 = -6.5 

 The significant of the above numbers can be 

obtained by retaining the hidden bit 1 of the two 

mantissa. 

To multiply A and B 

1. Multiply significant:  1.1110 

     x1.1010 

00000 

11110 

     00000 

    11110  

    00000 

110001100 

2. Place the decimal point: 11.00001100 

 

3. Add exponents:       10000100 

+ 10000001 

  100000101 

 

The exponent representing the two numbers is 

already shifted/biased by the bias value (127) and 

is not the true exponent; i.e. EA = EA-true + bias 

and EB = EB-true + bias 

And 

                          

        (3.1) 

So we should subtract the bias from the resultant 

exponent otherwise the bias will be added twice. 

        100000101 

- 1111111 

 10000110 

4. Obtain the sign bit and put the result 

together:  

1 10000110 11.0001100 

5.  Normalize the result so that there is a 1 just 

before the radix point (decimal point). Moving 

the radix point one place to the left increments 

the exponent by 1; moving one place to the right 

decrements the exponent by 1.  

       1 10000110 11.00001100  (before normalizing) 

       1 10000111 1.100001100  (normalized) 

 

The result is (without the hidden bit): 

1 10000111 100001100 

6. The mantissa bits are more than 4 bits (mantissa 

available bits); rounding is needed. If we applied 

the truncation rounding mode then the stored value 

is:  

1 10000111 1000 

 

Structure of the Multiplier 

 

Rounding support can be added as a separate unit 

that can be accessed by the multiplier or by a 

floating point adder, thus accommodating for more 

precision if the multiplier is connected directly to 

an adder in a MAC unit. 

 

 
Figure 1. Floating Point Multiplier Block Diagram 

 

The floating point multiplier structure contains the: 

1. Exponents addition 

2. Significant multiplication 

3. Result’s sign calculation 

These functions are independent and are done in 

parallel. The significant multiplication is done on 

two mantissa bit numbers, which we will call the 

intermediate product (IP). The IP is represented as 

(47 down to 0) for single precision (127 down to 0) 

MULTIPLIER RESULT 

NORMALIZER 

EXOR 

+ 

- 

* 

A_exponent B_exponent A_mantissa 

A_sign B_sign 

Bias 

B_mantissa 
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for double precision. The following sections detail 

each block of the floating point multiplier.   

 

Hardware of Floating Point Multiplier 

 

Unsigned Adder 

 

This unsigned adder is responsible for adding the 

exponent of the first input to the exponent of the 

second input and subtracting the Bias (127) from 

the addition result (i.e. A exponent + B_exponent - 

Bias). The result of this stage is called the 

intermediate exponent. 

 

The add operation is done on 8 bits, and there is no 

need for a quick result because most of the 

calculation time is spent in the significand 

multiplication process (multiplying 24 bits by 24 

bits); thus we need a moderate exponent adder and 

a fast significand multiplier. 

 

An 8-bit ripple carry adder is used to add the two 

input exponents. As shown in  Fig. 4.2 a ripple 

carry adder is a chain of cascaded full adders and 

one half adder; each full adder has three inputs (A, 

B, Ci) and two outputs (S, Co). The carry out (Co) of 

each adder is fed to the next full adder (i.e. each 

carry bit "ripples" to the next full adder). 

 
Figure 2 :  Ripple Carry Adder 

 

 

The addition process produces an 8 bit sum (S7 to 

S0) and a carry bit (Co,7). These bits are 

concatenated to form a 9 bit addition result (S8 to S0) 

from which the Bias is subtracted.  

 

 

 

 

Table 1: Port list Ripple Carry Adder 

 

S.No. Port Direction Size Description 

1. E1 Input 8 

  Bits 23-30 for the 

first input  

2. E2 Input 8 

 Bits 23-30 for the 

second input 

3. S0 Output 8 

  Result of the 

addition 

4. Ca Output 1 

  Carry due to 

addition 

                                        

SUBTRACTOR 

The exponent of the IEEE 754 forat consists of the 

sum of original exponent and the bias value. While 

adding two exponent values, bias is added two 

times. So bias is subtracted from the result of the 

adder. The Bias is subtracted using an array of 

ripple borrow subtractors.    

                                              

A normal subtractor has three inputs (minuend (S), 

subtrahend (T), Borrow in (Bi)) and two outputs 

(Difference (R), Borrow out (Bo)). The subtractor 

logic can be optimized if one of its inputs is a 

constant value which is our case, where the Bias is 

constant .In single precision the Bias subtractor 

which is a chain of 7 one subtractors (OS) followed 

by 2 zero subtractors (ZS); the borrow output of 

each subtractor is fed to the next subtractor. If an 

underflow occurs then Eresult< 0 and the number is 

out of the IEEE 754 single precision normalized 

numbers range; in this case the output is signaled to 

0 and an underflow flag is asserted. 

 

Table 2: Port list of Ripple Borrow 

S.No. Port Direction Size Description 

1. T Input 8     Bias value 

2. S Input 8 

Result of ripple 

carry adder 

3. C0 Input 1 

    Carry of ripple 

carry adder 

4. B0 Output 1 

Borrow output of 

subtractor 

5. R Output 8 

    Output of the 

subtractor 

HA FA FA FA 

S7 Si S1 S0 

A7 Ai A1 A0 B7 Bi B1 B0 

C0,7 
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Subtractor 

 

Unsigned Multiplier 

 

This unit is responsible for multiplying the 

unsigned significand and placing the decimal point 

in the multiplication product. The result of 

significand multiplication will be called the 

intermediate product (IP). The unsigned significand 

multiplication is done on 24 bit. Multiplier 

performance should be taken into consideration so 

as not to affect the whole multiplier’s performance. 

A 24x24 bit carry save multiplier architecture is 

used and for the double precision 52 x52 bit carry 

save  multiplier is used as it has a moderate speed 

with a simple architecture. In the carry save 

multiplier, the carry bits are passed diagonally 

downwards (i.e. the carry bit is propagated to the 

next stage).  

 

Carry save multiplier has three main stages: 

 

1. The first stage is an array of half adders.  

2. The middle stages are arrays of full adders. The 

number of middle stages is equal to the 

significand size minus two.  

3. The last stage is an array of ripple carry adders. 

This stage is called the vector merging stage. 

 

 

 
Figure 3 : Unsigned Multiplier 

 

The number of adders (Half adders and Full adders) 

in each stage is equal to the significand size minus 

one. For example, a 4x4 carry save multiplier has 

the following stages 

 The first stage consists of three half adders.  

 Two middle stages; each consists of three full 

adders.  

 The vector merging stage consists of one half 

adder and two full adders. 

 

The decimal point is between bits 45 and 46 in the 

significand multiplier result. The multiplication 

time taken by the carry save multiplier is 

determined by its critical path. The critical path 

starts at the AND gate of the first partial products 

(i.e. a1b0 and a0b1), passes through the carry logic of 

the first half adder and the carry logic of the first 

full adder of the middle stages, then passes through 

all the vector merging adders. The critical path is 

marked 

 

Table 3 : Port list of Unsigned Multiplier 

 

S.No. Port Direction Size Description 

1. A1 Input 24 

       Bit 0-22 of 

first input 

2. A2 Input 24 

Bit 0-22 of 

second input 

3. S Output 47 

      Output of 

multiplier 

 

Normalizer  

 

The result of the significand multiplication 

(intermediate product) must be normalized to have 

a leading “1” just to the left of the decimal point 

(i.e. in the bit 46 in the intermediate product). Since 

the inputs are normalized numbers then the 

intermediate product has the leading one at bit 46 or 

47 

1. If the leading one is at bit 46 (i.e. to the left of 

the decimal point) then the intermediate product 

is already a normalized number and no shift is 

needed.  

2. If the leading one is at bit 47 then the 

intermediate product is shifted to the right and 

the exponent is incremented by 1.  

S 
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The shift operation is done using combinational 

shift logic made by multiplexers. Fig. 8 shows a 

simplified logic of a Normalizer that has an 8 bit 

intermediate product input and a 6 bit intermediate 

exponent input 

   Table 4 : Port list of Normalizer 

S.No. Port Direction Size Description 

1. Si Input 24 Result of 

multiplier 

2. Ei Input 8 Result of the 

subtractor 

3 S0 Output 23 Significand 

result due to 

normalization 

4 E0 Output 8 Final output of 

the exponent 

 

Underflow/Overflow Detection  

 

Overflow/underflow means that the result’s 

exponent is too large/small to be represented in the 

exponent field. The exponent of the result must be 8 

bits in size, and must be between 1 and 254 

otherwise the value is not a normalized one. An 

overflow may occur while adding the two 

exponents or during normalization. Overflow due to 

exponent addition may be compensated during 

subtraction of the bias; resulting in a normal output 

value (normal operation). An underflow may occur 

while subtracting the bias to form the intermediate 

exponent. If the intermediate exponent < 0 then it’s 

an underflow that can never be compensated; if the 

intermediate exponent = 0 then it’s an underflow 

that may be compensated during normalization by 

adding 1 to it. 

 

When an overflow occurs an overflow flag signal 

goes high and the result turns to ±Infinity (sign 

determined according to the sign of the floating 

point multiplier inputs). When an underflow occurs 

an underflow flag signal goes high and the result 

turns to ±Zero (sign determined according to the 

sign of the floating point multiplier inputs). 

Denormalized numbers are signaled to Zero with 

the appropriate sign calculated from the inputs and 

an underflow flag is raised. Assume that E1 and E2 

are the exponents of the two numbers A and B 

respectively; the result’s exponent is calculated by  

Eresult = E1 + E2 – 127 

Table 5 : Underflow and Overflow Conditions 

E result Category Comments 

-125 ≤ Eresult< 

0 

Underflow Can’t be compensated 

during  

normalization   

Eresult = 0 Zero May turn to normalized 

number during  

normalization (by adding 1 

to it) 

1 <Eresult< 254 Normalized 

number 

May result in overflow 

during  

Normalization 

255 ≤  Eresult Overflow Can’t be compensated 

 

E1 and E2 can have the values from 1 to 254; 

resulting in Eresult having values from -125 (2-127) 

to 381 (508-127); but for normalized numbers, 

Eresult can only have the values from 1 to 254. Table 

4.9 summarizes the Eresult different values and the 

effect of normalization on it. 

 

III. RESULTS AND DISCUSSION 
 

 
Figure 4 : : Full Adder Output 
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Figure 5 : Ripple Carry Adder Output 

 

 
Figure 5 : Normalizer Output 

 

 
 

Figure 6 :  Unsigned Multiplier Output 

 

 
 

Figure 7 : Single Precision Floating point Multiplier Output (60×-6.5) 

 

 

 

 

DESIGN SUMMARY 

 
 

IV. CONCLUSION AND FUTURE WORK 
 

This paper presents an implementation of a floating 

point multiplier that supports the IEEE 754-2008 

binary interchange format. A methodology for 

estimating the power and speed has been developed. 

This Pipelined vectorized floating point multiplier 

supporting FP16, FP32, FP64 input data and 

reduces the area, power, latency and increases 

throughput. Precision can be implemented by taking 

the 128 bit input operands. 

 

Register Transfer Logic has developed for Double 

precision Floating Point Multiplier further 

simulation results can be implemented. The 

performance of the Floating point multiplier can be 

increased by taking the 256 bit input bus instead of 

the 128 bit bus. The throughput and area 

optimization can be improved by using more 

general significand multipliers and exponent adders. 

Two 53 bit multipliers and two 24 bit multipliers 

are used to compute the significands of all 

supported Floating point formats. 
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